NASA Contractor Report 4292, Vol. 1

A Three-Dimensional, Compressible,
Laminar Boundary-Layer Method
for General Fuselages

Volume I—Numerical Method

Yong-Sun Wie
High Technology Corporation
Hampton, Virginia

Prepared for
Langley Research Center
under Contract NAS1-18240

NASA

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Division

1990






SUMMARY

A procedure for calculating three-dimensional, compressible laminar boundary-layer
flow on general fuselage shapes is described. The boundary-layer solutions can be obtained
in either nonorthogonal body-oriented coordinates or orthogonal streamline coordinates.
The numerical procedure is second-order accurate, efficient and independent of the cross-
flow velocity direction.

Numerical results are presented for several test cases, including a sharp cone, an el-
lipsoid of revolution, and a general aircraft fuselage at angle of attack. Comparisons are
made between numerical results obtained using nonorthogonal curvilinear body-oriented
coordinates and streamline coordinates. A user’s manual with a detailed description of

computer programs and input is presented in Volume II.
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NOMENCLATURE

A,B stagnation point velocity gradients

a,b major and minor semiaxis lengths of the ellipsoid of revolution

a, cylinder radius

C Pt/ Pete

c* B/A

c pe/p

Cy. skin friction coefficient in the z-direction based on the edge condition,

Eq. (103a) or Eq. (104a)
Cy, skin friction coefficient in the y-direction based on the edge condition,

Eq. (103b) or Eq. (104b)

Cp Pressure coefficient

Cp specific heat

E H/H,, Eq. (48)

F u/u,, Eq. (48)

f; F, Eq. (48)

G v/Vies or v,/V,.s, Eq. (48) or Eq. (56)

9 G, Eq. (48) or Eq. (56)

H total enthalpy

hy, hs metric coefficients in the z and y coordinates, respectively.
1, 7, k indices in the z, y, and 2 direction, respectively

tmaz, jmaz, kmaz
number of boundary-layer grids in the z, y, and ¢ direction, respectively
K coefficient of thermal conductivity (= ¢,u/Pr)
K, K, geodesic curvature of the curves y = const. and z = const., respectively,
Eq. (5) or (19)
Ki2, K,  parameters defined in Eq. (6) or (19)

vii



u,v,w
URr, U, Uy

Ugt, Uyty Uy

z,y,2
z,y',
x*’ yi, zlt
b'¢

o

Mach number

coefficients, defined in Eq. (54) or Eq. (60)

coefficients defined in Eq. (54) or Eq. (60)

pressure

Prandtl number (0.72 )

radius measured from the X axes, Fig. 41

spherical polar coordinates, Fig. 41

free stream Reynolds Number, poVoo@/ too

heat transfer at the wall, Eq. (108)

arc length measured along y = const lines.

temperature

b/a

velocity components in the z,y, and 2 directions

inviscid velocity components in the R, ©, ¢ directions

inviscid velocity components in the z',y' and 2' directions

velocity components in the z*,y*, and z* directions (near the stagnation point)
dv./dy

total velocity, Eq. (7)

body-oriented coordinates (Fig. 1) or streamline coordinates (Fig. 2)
rectangular coordinates with the origin at the nose point (Fig. 41)
rectangular coordinates with the origin at the stagnation point, Fig. 37 or 38
axial distance measured from the nose, see Fig. 1

angle of attack

Az, Ay, A¢ grid spacing in the z,y, ¢ directions, respectively.

6
6*

boundary-layer thickness; (2)v/v,=o0.905
displacement thickness, defined in Eq. (107)

small angle to locate the initial streamlines near the stagnation point, Fig. 41
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transformed normal coordinate, Eq. (49)

¢
0 angle between z and y coordinates
0. half cone angle, Fig. 8
0, angle between two coordinate systems, («',y,2') and (z*,y",2"), Fig. 37
i molecular viscosity
v Iy
density
¢ azimuthal angle, 0 and 7 on the windward and leeward plane of symmetry,
respectively, see Fig. 1
subscript
aw adiabatic wall
b body-oriented coordinates
e edge of the boundary-layer
0sp origin of spherical polar coordinates
s stagnation point
st streamline coordinates
t total
w wall
z partial differentiation with respect to =
y partial differentiation with respect to y
¢ partial differentiation with respect to ¢
00 free stream
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1. INTRODUCTION

Three-dimensional boundary-layer flows have been numerically studied for over three
decades. During this period the capability to obtain numerical solutions has advanced
from solving the similarity equations for relatively simple geometric shapes to the full
nonsimilar equations for more complex configurations. The earliest referenceable numerical
work, to the authors knowledge, was that of Raetz (1] and Der and Raetz [2]. These early
papers remain as important contributions in that they introduced the stability of the
mixed parabolic-hyperbolic system associated with the governing equations; i.e., the zone
of influence-dependence principle. Blottner [3] presented a state-of-the art review of three-
dimensional boundary-layer procedures that, with the exception of recently developed
numerical methods, remains current at the present date. More recent treatments of the
subject are presented in References [4] and [5].

Over the past decade, the major emphasis in computational fluid mechanics has focused
on numerically solving the Euler and Navier-Stokes equations for increasingly more com-
plex aerodynamic shapes. In many instances the Navier-Stokes approach is the only viable
procedure, i.e., for flows with strong interaction and separation. However, Navier-Stokes
solutions are generally much more expensive to obtain in terms of computer resources than
boundary-layer procedures, and while capable of simulating the physics of complex flows
they are often of low resolution due to grid point restrictions. Furthermore, Navier-Stokes
solutions are not essential for many design and analysis procedures.

Renewed emphasis on drag reduction [6], laminar flow control 7], and transi-tion pre-
diction [6] for complex flight configurations has clearly indicated the need to develop three-
dimensional boundary-layer software that can be routinely applied to aerospace vehicles at
a fraction of the cost associated with solutions obtained from the thin-layer Navier-Stokes
equations. Research at the NASA Langley Research Center has resulted in the develop-
ment and verification of two robust boundary-layer procedures for application to general

aerospace configurations. One of these, a fourth-order accurate procedure for solving the
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three-dimensional boundary-layer equations for aerospace configurations, was recently re-
ported in Reference [8].

Theory and equations for the other, a second-order accurate finite-difference procedure
independent of the sign of crossflow velocity component for solving the three-dimensional,
compressible, laminar boundary-layer equations, are presented in the present report. The
software used to generate the numerical results has been optimized for fuselage shapes
having a plane of symmetry; however, the general procedure is not limited to fuselage
shapes and has been applied to wing flows [9].

Results are presented for several test cases including a circular cone, an ellipsoid of
revolution and a general aircraft fuselage at angle of attack. The method is valid for
perfect gas flows from subsonic to hypersonic Mach numbers. Interaction between the
inviscid and viscous flow is not included. A detailed description of the software including

input/output for a fuselage shape is presented in volume II.



2. COORDINATE SYSTEM

Non-orthogonal curvilinear surface coordinates are the most general system for the
boundary-layer equations for complex aerospace configurations (see Ref. [5].). Two co-
ordinate systems are presented in the present report: (1) a nonorthogonal body-oriented
coordinate system with cross-flow planes perpendicular to the body axis (Fig. 1); and (2)
an orthogonal streamline coordinate system (Fig. 2).

Each of the two selected coordinate systems has its particular advantages and disad-
vantages. The nonorthogonal body-oriented system is optimum from the viewpoints of
grid generation and grid spacing control. Also, in certain aspects the interface software
is simpler to apply since most inviscid solutions for bodies having a plane of symmetry
use one coordinate plane perpendicular to the body axis. However, the boundary-layer
equations are singular at the nose of the body (X = 0) and either a special transformation
such as that used in Reference [10] or other procedures must be used to isolate this sin-
gular point. The streamline coordinate system is orthogonal with zero values of cross-flow
velocity at the wall and edge boundaries. The system’s origin is located at the stagnation
point and is free of geometric singularities. But, the system is not independent of angle
of attack, and downstream grid line distribution and grid point spacing is difficult, if not
impossible, to control without an adaptive grid procedure such as that used in Ref. [11].
The primary interest in the streamline coordinate system in the present paper is in the
eventual application of the software package to transition prediction; i.e., the output along

the streamlines will serve as input for transition prediction procedures {12].



3. THREE-DIMENSIONAL BOUNDARY-LAYER EQUATIONS

3.1 Body-Oriented Coordinate System

The governing equations (dimensional) for the body-oriented coordinate system are as

follows:

continuity equation

d 7] ) 7] .
a(p“hg sin 8) + %(pvhl sind) + E(Pwhlhz sinf) =0 (1)

z-momentum equation

u du v ou Ju )
Z—I'a—z -+ ;—za—y -+ pwé—z- —_ pulKl cot0 + pv2K2 CSCO -+ puvKn
csc20dp cotbescddp I, Ou
=00k P o w oY) (2
h, Oz hs dy 0Oz 0z

y-momentum equation

u dv v dv dv
2_15; + %;a + pwo— — pv K, cot  + pu Ky csc 8 + puv Ky

_cotfcscddp csc28dp 8, Ov 3)

h 2z h oy 9:%3z)
energy equation

pu3H+p03H+ waﬂ_i iBH+ (1- 1)8(V_2) ()
R0z R By Y8z 8z \Proz MV T Prlazz

The metric coefficients h; and k, are functions of z and y. The parameters K; and K, are

geodesic curvatures of the curves y = const and z = const respectively, where

1 ) Ok, 1 ) Ohy
Ky = g smo {ﬁ(hzwsa) N a_y}’ K2 = pinemo {8y(hl cos ) E} (5)

and

1 s . Ok Ok,
- g _ 22
Ky, Fho om0 {(1 + cos® 8) 3y 2 cos a }
oh oh
- 29y 2 _ g1
Kqy hihsinZ 0 {(1 + cos* 8) 3z 2 cos 3y (6)
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V is the total velocity and is given by

V = (u® +v* + 2uvcos g)!/ (7)
The boundary conditions are
z=4, v = u.(z,y), v=v(z,y), H=H, (8.a)
o0H
z=0, u=v=0, w=w,, H=H, or (g)wzo (8.b)

At the edge of the boundary-layer, the pressure gradients are related to the inviscid veloc-

ities by the following equations:

v, du, v, 0u,
Pe

}::5_:; 7),—2 ay —_ uZKI cotf + ‘Ung csc b + ueUeK12}

csc@3p cotbcschdap

- 9.
R0z b 0y (9-2)
u,dv, v, Ov, R \
Pe h, 9z + b 9y v2Kycot 8 + ulK;cscf + u v Koy
_ cot fcscfdp csc?d 9p o)

hy oz h, dy
The perfect gas equation of state and Sutherland’s viscosity are used to close the equation

set.

For the windward and leeward plane of symmetry v and K;csc@ are zero and 6 is
generally 7/2 ( 8 is retained for the general system.). Consequently, each term in the y-
momentum equation vanishes. However, partial differentiation of Eq. (3) with respect to
y yields an equation for dv/dy. After differentiation and using the appropriate symmetry
conditions (Au/dy = dw/dy = 8v/dy* = 0H[dy = Oh,/By = dhy/8y = 0) along with
Eq. (9), the governing equations for the plane of symmetry become

continuity equation

i puhysin 8) + pv hysin 8 + i pwhihysing) =0 (10
z v 0z



z-momentum equation

pu du Ju 2 u, du, 9 Jd , Ou
—_— — —pu*K cot 8 = p,(— — —(p—
Ry oz TPV, e Hicotd = p (3 an —uKycotd) + o (kg (11)
y-momentum equation
Pudvy 9% P 29(Kicscd)
T + pw £ + » v, + puvy Koy + pu By
u, vy, Vi, ,0(Kyesc8) @, v,
= Pe\ 7 e e eK e - A =
Pl o T, T M) Fpune—— — + 5o (k") (12)
energy equation
pudH oH o | u 0H 1.0 ,V?
bl = 1 — ) (—
hy Oz tow oz dz | Pr Oz + 4 Pr)az( 2 ) (13)
where v, = dv/8y, v, = dv,/0y and V = u along these lines.
The boundary conditions for the plane of symmetry are
z=26, u = u.(z,y), v,=v,, H=H, (14.a)
z=0, u=v=v,=0, w=w,, H=H, or (%—I{-)wzo (14.b)
Yy

3.2 Streamline Coordinate System

The streamline coordinate system is orthogonal; consequently, with the exception of
certain metric coefficients and the boundary conditions, the governing equations can be
obtained directly by equating 8 = 7/2 in Eqs. (1)-(4) and Egs. (10)-(13), i.e.,

continuity equation

a a d
z-momentum equation
pudu pvou du 9 1dp 03, Ou
—_——t —— — K Ko=————+4+—(p— 16
oz moy PUa; TV Kt ewKn = —pat 5 kg) (16)



y-momentum equation

19p J, Ov

pudv pvov dv 19p 0 Ov
oz " moy T "a: hq Oy Bz(uaz)

pu 17
hidz | Ry 0y 2 (17)

+ pu’ Ky + puvKy =

energy equation

pudH pvdH 80H O | u 0H 1.0 V?
£ = S Bl ik (= 18
h, Oz + hy Jy +ow 8z Oz | Pr oz +u(1 Pr)Bz( 2 ) (18)

The parameters K, Ky, K12, and Kz, are given by

1 6h1 1 ahZ
K, — — hakdd K, = — il ) 19.
! hih; Oy’ 2 hyh, 8z (19:2)
1 6h1 1 ahz
Ko = l _ _K Ky=———7—=-K 19.b
12 h1h2 ay 1y 21 hlhz 8::: 2 ( )

V is the total velocity and is given by

V = (u? + )" (20)

The boundary conditions are
z =6, u=1u.(z,y), v=0, H=H, (21.a)
z=0, v=v=0, w=w, H=H, or (%g)sz (21.b)

At the edge of the boundary-layer in this coordinate system, the pressure gradients are
related to the inviscid velocities by the following equations:

won 10 2.
Pey 8z h 0z :
puldhy 1 09p

. 22.b
h1h2 ay h2 ay ( )
In the streamline coordinate system for the boundary-layer, the metric coefficient h; is

defined as

The governing equations for the plane of symmetry become

continuity equation

) 3
Ez(puhg) + pvyhy + a—z-(pwhlhz) =0 (24)
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z-momentum equation

pu du du u,du, O, Ou

7.0z + pwo— = Pez;—a'; a(#a) (25)
y-momentum equation
pu Bvy dv, p , 2 0K, , 0K, Jd, Ov,
moor TPUs; TRyt T En w5 = pul s 4 2 (k) (26)
energy equation
pudH 8H 08 [ u 8H 1,98 ,V?
il e - ) (— 27
h, Oz ”waz dz | Pr 0z +# Pr)az(2) (27)
where v, = dv/dy and V = u along these lines.
The boundary conditions for the plane of symmetry are
z =6, u = u,(z,y), v,=0, H=H, (28.a)
7]
z2=0, u=v=v,=0, w=w,, H=H, or (79—21-).,,_0 (28.b)

3.3 Three-Dimensional Stagnation Point

To obtain the boundary-layer solutions at the three-dimensional stagnation point, the
governing equations for three-dimensional laminar compressible flows in Cartesian coor-
dinates are required and can be obtained by setting h; = 1, h; = 1, and § = 7/2 in
Egs. (1)-(4). Superscript * is used to distinguish this coordinate system from the other
coordinate system.

continuity equation

9w, 9w, 9
z-momentum equation
v’ du’ du’ dp a , du*
*__ 1____ » — 30
U Y et e = o T e B ge) (30)
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y-momentum equation

av* av* av* dp Jd , ov*
* * * —_ — 31
e az* Ty ay* +ow dz* dy* + az* (”az*) (31)
energy equation
J0H J0H o0H 3 | u O0H 1, 8 V2
*® * * — - 1 —_— 32
PV e TP e TP g az*{Praz*_i-u( R )} (32)
where
V# — (ui2 + 0*2)1/2 (33)
The boundary conditions are
z' =4, v =u,(z,y), v =v)(z',y"), H=H, (34.a)

3.4 Sharp Cone

The boundary-layer solutions for the flow on the sharp cone are used for generating
initial profiles near the nose tip for sharp-nose fuselage shapes. The governing equations
for a sharp cone, written in terms of z, the coordinate along a cone generator, y, the
cone azimuthal angle and 2, the coordinate normal to the cone surface can be obtained by
substituting hy = 1, hy = r = zsinf,, and § = n/2 from Egs. (1)-(4) and Eq. (10)-(13)
where 6. is the half cone angle:

continuity equation

d a 7/
9 . 9 o . _ 3
ax(puzsmﬂc) + ay(pv) + az(pw:csxnﬁc) 0 (35)

z-momentum equation

Ju v Jdu du J  Jdu
: Pot= (us) (36)

oz + xsinGCa +”waz z = 8z
9



y-momentum equation

dv pv Ov dv  puv 1 6p @8, dv

et zemdiay TPzt 5~ zemfdy | 5:\“8s) (57)
energy equation
oH pv OH 8H 0 [ p 60H 1,0 V?
et oomd. oy "oz a{ﬁzz“L“(l‘ﬁ)a;(?) (38)
where
V =(u?+ v?)1/2 (39)
The boundary conditions are
z =24, u=1u/y), v=vl(y), H=H, (40.a)
d
z=0, u=v=0 w=w,, H=H, or (—ag)w:O (40.b)

The conical inviscid flow assumption has been made in the above equations, i.e., all gradi-
ents of the inviscid variables in the z direction are assumed to be zero.
At the edge of the boundary-layer, the pressure gradient in the y-direction (8p/dy) is

related to the inviscid velocities by the following equation:

pev. Ov, 1 dp
—— + pelUeVe = —

sin 8, Jdy sin08_y (41)

Using the conical inviscid flow assumption, the following equation can be obtained from

Eq. (9.2).
1 OJu,
= 42
sin ., 3y ve (42)
The governing equations for the plane of symmetry become
continuity equation
0 . g .
-a—;(pu:c sin8,) + pvy, + -é;(pwz sinf.) =0 (43)
z-momentum equation
du + du d ( 3u) (44)
U— + pw— = — U5
Plaz Pz ~ 9z Hoz

10



y-momentum equation

vy O P vy vy Ve | Uy 90U
pu3x+pwaz+zsin06(6y) + T _p‘(xsinﬁc+ z ) 6z(u8z)

energy equation

uaH+ waH_ 9 Lifi+ (1__}_)1(‘/_2)
P TP, T oz Praz XY T Prez\ 2

where v, = dv/dy, and V = u along these lines.

The boundary conditions for the plane of symmetry are

z =24, u=u/y), v,=v,. H=H,

z =0, u=v=v,=0, w=w, H=H, or (5-)u=0

11
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4. TRANSFORMED EQUATIONS

The boundary-layer equations are transformed to the coordinate system used by Cebeci

et al. [13] which removes the singularity at z = 0 and allows coupled solution of the
continuity and momentum equations.

The following definitions are introduced
F=f=ufu, G=g =v/V,.;y, E=H/H, (48)
together with the transformation

u, [?
=z, Y=y, ¢ = Pelle [7 P 4, (49)
HeS Jo p.

where
s = /c; ) hidz (50)

In the present report, V,.s is chosen to be V,, except for the three-dimensional stagnation

point equations, where it is taken to be v,.

4.1 Body-oriented coordinate system

Using the transformation given in Eq. (49) and the relations given by Eq. (9), the
governing Eqgs. (1)-(4) are transformed to the following form:

z-momentum equation
F=f, (51.a)
(CF); + mifF, — myF? — msFG + mgF,g — mgG® + myjc — mysF,
= myo(FF, — Fif;) + m:(GF, — Fg,) (51.b)
y-momentum equation
G =g, (52.a)
(CG,); + m1fG; — m3G? — myFG + meG,g — moF? + mysc — my3G,

= mlo(FGz - G:fz) + m7(GG’,, - G’;gy) (52'}3)
12



energy equation

(n1E;); + naE; + (ns); — musE; = mu(FE; — Ef2) + mi(GE, — Ecgy) (53)

The coefficients m; to mys and n; to ng are as follows:

1 s Jdu,
my = —- 1+h

1Ue OF } hihsosin 0,/,0,;1c oz

{h2 sin 04/pefic} (54.a)

2
s Ou
= £ —sKcotd 54.b
™= oz (54.5)
Vref S aVref
= - K. 54.
ms scot 0K, .. + hou. Oy (54.c)
$ a‘/ref
= sK - .
my = SKa + haViy Oz (54.d)
_ svref aue ‘/ref
ms = hyu® By + sKig ue (54.€)
me = > { PelleleS } (54f)
h1h2 sin 0\/ PelelUeS ay
svrcf
Vie
mg = sKjcscf( " AL (54.h)
my = sKj cscl (54.1)
ref
myp = — (54.j)

hy

1 Jdu, v, Ou, Ve g v,
my; =S {hﬂte e + hya® By — cot 8K, + csc HKz(u_,) + Klzu_,} (54.k)

s {u, dv. v, 0v,

myg = — cot 0 K,v2 + csc 0K u? + Kzlu,v,} (54.1)

UeVrer |1 0z g By
my3 = (pw)s Pelle? (54.m)
Pelle He
C
= — 4,

n; Pr (5 n)
ny = mif + meg (54.0)

C‘U,Z 1 an V,-ef
ns = g (1- F;‘) {FF; + GG, (— . )2+ u—ecos 6(FG, + F;G’)} (54.p)

The boundary conditions are
¢=0: f=F=9g=G=0, E'=0 or E=E, (55.a)
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$=¢ ¢ F=1 G=v,/V,., E=1 (55.b)
The governing equations for the plane of symmetry are transformed by defining

F=f =u/u,, G=g¢ =v,/V,y, E=HJH, (56)

z-momentum equation
F=f, (57.a)
(CF,); + mifF, — myF* + mgF,g + myc — misF, = myo(FF, — F.f,) (57.b)
y-momentum equation

G =g, (58.a)
(CG;); + mlfo - m3G2 - m4FG' + mstg - mgF2 + mjsC — m13G$
= mlO(FGz - Ggfz) (58b)

energy equation

(n1E;); + n2E; + (ns), — misE; = myo(FE, — E, f2) (59)

The coeflicients m,, m,, m4, myo, mys, ny1, n2 are the same as in Eq. (54). The remaining

coeflicients are defined as follows:

me = j:T: (60.2)
e = s (60.b)
e = 1871: a(Kjazsc 2 (60.c)
my = hlsu, a(,;:: — scot 8K, (60.d)
myp = ;uf B(K;;sc 6) V,S,; (hilc";;e u‘ﬁ; + Kyyvy.) (60.¢)
e C;Zf(l B %)F F (60.)
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The boundary conditions are

00 E'=0 or E=E, (61.a)

)
I
o
~
I
1
{l

L~
i
Q
1

g:ge: F:l’ G:vye, E:l (61_b)
Vref

4.2 Streamline Coordinate System

The transformed equations have the same form as Eq. (51)-(53) off the plane of sym-
metry. The coeffcients m; to mis and n; to ng, obtained by setting 8 = 7/2, Veey = Veos

hy = t,/Veo, and v, = 0 from the Eq. (54), are as follows:

1 s Jdu s 2
==11 - — {ho/Pelie 62.
™2 { * hou. 9z } t s 8 Ve } (62.2)
s Ou,
mg — hlu,_&:— (62b)
mg — 0 (62.(:)
my = 8K21 = —us (62d)
ms =0 (62.€)
s d Voo
o= e (62
Vo
my = -h—27¢ (62.g)
Voo
ms = sKa( - )2 (62.h)
my = sKl% (62.1)
s
= — 6
mio P (62.))
s Ou,
mi Fow. 9z (62.1()
U,
mis = SKI-‘TO; (62.1)
mis = (pw)y [petes (62.m)
Pele He
C
- 62.
"= By (62.n)
Ny = mlf + mgg (62 0)
C’uz 1 Voo



The boundary conditions are

(63.a)

(63.b)

The transformed equations for the plane of symmetry for this coordinate system has

the same form as Eq. (57)-(59). The coefficients my, My, My, Mg, Mys, Ny, Ny are the same

as in Eq. (62). The remaining coefficients are defined as follows:

The boundary conditions are

sV
8 h2u¢
me = Mg
_ Su, aKl
°" Vo 9y
s Jdu,
. 9z
su, 0K,
my; = Voo 3y
2
ng = C;Ze( - %)FFr
=F=¢g=G=0, E'=0 or

16

(64.a)
(64.b)

(64.c)
(64.d)
(64.€)

(64.f)

(65.a)

(65.b)



4.3 Three-Dimensional Stagnation Point

The governing equations for three-dimensional laminar compressible flows in rectangu-
lar coordinates, Eq. (29)-(32), are transformed using Eq. (49) and Howarth’s [14] inviscid
velocity components near the stagnation point. For s approaching zero, the following sim-
ilarity (ordinary differential) equations are obtained.

z-momentum equation

Wf7+fﬂ—tﬂ”+§ﬂg+%=o (66)
y-momentum equation
W¢Y+M”—§WV+§¢@+§%=O (67)
energy equation
(%E')' +(f+ gg)E' =0 (68)

The equations above are based on the assumptions that the outer flow is irrotational and

that the inviscid velocity components near the stagnation point can be approximated by
u, = Az", v, = By" (69)

Equations (66)-(68) can be obtained from Eqs. (51)-(54) by substituting u} = Az*, V, ., =
v; = By*, hy =1, hp = 1, 8 = 7/2, and taking limit as s approaching to zero. The primes

denote ordinary differentiation with respect to ¢, i.e.,

af u dg vt H
! = e— = e—— ! = mm— = e d E = - 70
The boundary conditions are
¢=0: f=f=g=¢g=0, E'=0 or E=E, (71.a)
¢=¢: f'=1, ¢'=1 E=1 (71.b)
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4.4 Sharp Cone

Using Eq. (49), the boundary-layer equations off the lines of symmetry are transformed
o (Here, V,.p = Vo ):

z-momentum equation

2
Ve Voo T(pcﬂ'c) 1 ’UCVOO Voo
(Clee)e + o ffc: _::2 fege + (2sin0 " yp " 2 w2 )feeq + ( " )%q?
(pw)w Pel.S Voo f
_—p " 1 g = —sm0 w ( ‘By fr; ) (72)

y-momentum equation

3 1 Bve Vco Eq‘(peﬂe) 1 ‘U,Voo
C - L - =
( gff)f+ zfgff Sln0 U ay ffgf (2Sin03u, Pelbe 2 uz )gffg
v, ov, Ve \ P W)y [peti.S Voo dg dg
Ho—a—— _‘e )‘—c - '_( ) ¢¢ = = (gg_; — Gee o) (73)
sinf.u.Veo 0y Vo' p Pelle He sinf,u, ° dy dy

energy quation

(%E:)f + {gf'*‘ (

a 1
Voo =(pette) 1 . Voo W)y cUpS
3y 1 )g}Ef _(pw)w [p E,

2sinf.u, p.u. 2 u? Pell. Me

2 V. , OE dg

+ {qu (1- ‘1_) C(fefee + (V ) gcgcr)} = s, (9:5 - E:g‘g) (74)

where f, = 0f/0¢ =u/u,, ¢, =09/3¢=v/Vy, and E =H/H,

The boundary conditions are

¢=0: f=fi=9=¢,=0, E,=0 or E=E, (75.a)

s=¢: f=1, g=5- E=1 (75.b)

The boundary-layer equations on the lines of symmetry become

z-momentum equation

Veo

ouefffg_o (76)

3
(Cfes)e + Eff;:
y-momentum equation
2

vye Vye | Pe
_— — =0 77
959 * (ueVoo sin 0:: * Voo) p ( )

V.
U, si n0

3
(Cyee) + Efg;: — fege +

sn0 LU,
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energy equation

C 3 1% u? 1
—E). +4—f + o E,.+{-=2(1—-—7)C =0 78
(PT f)f {Zf sinﬂcu,g} ¢ {F[e(l PT) fs‘fff}f ( )

where f, =0f /3¢ =u/u,, ¢, =08g/8¢=v,/V,, and E=H/H,

The boundary conditions are

¢=0: f=fi=9g=9,=0, E,=0 or E=E, (79.a)

Uye
¢=¢: fi=1, g;:f,”—, E=1 (79.b)

Equations (72)-(74), and (76)-(78) can be obtained from the Eqgs. (51)-(54) and Egs. (57)-
(60) by substuting hy = 1, s = z, hy = zsinb,, § = 7/2, Vrey = Voo and with the conical

inviscid flow assumption, i.e., du,/dz =0, dp/dz = 0, dp./0z =0, du,/8z = 0.
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5. NUMERICAL METHOD

5.1 Blottner’s Iterative Method

The transformed stagnation point equation, Eq. (66)-(68), the governing equations off
the lines of symmetry on the sharp cone, Eq. (72)-(74), and the equations along the lines
of symmetry on the cone, Eq. (76)-(78), are solved using Blottner’s iterative method [15].
All the equations listed above can be expressed in the following form:

z-momentum equation

F=f (80.a)
(CF,); + mif F; — maF? — msFG + meFrg — msG? + myc — misF; = mi(GF, — Fg,)
(80.b)

y-momentum equation

G = g; (81.3-)
(CG,); + mifG, — msG? — mFG + meG,g — moF? + myge — my3sG, = mz(GG, — G.9y)
(81.b)

energy equation
(n1E;)¢ + noE, + (ns); — musE, = mi(GE, — E.g,) (82)

The above equations are linearized using Newton-Rhapson’s linearization technique [3].
The ¢-derivative terms are discretized using a central finite-difference scheme. To solve the
governing equations off the line of symmetry of the cone (Eq. (72)-(74)), an implicit
marching procedure ( Ref. [15]) is used. Here, for the y-derivative term, an implicit second
order backward finite-difference is used.

For abbreviation, finite-difference operators are defined as

_ Fyy — Fer

= k=2,3,..,kmaz — 1 (83.a)
Agk + Adk-1
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2 Fk+1—Fk Fk—Fk—l

A(C = ———1C = Chyyg 83.b

(Cb ) = R, { T A VT ARG (83.5)

F.—F,;

6 F; =2 371 if j=2 83.c
vri Ay;_1 J ( )
6, F; = {Ay}_l — (Ayj-1 + ij—z)z} Fj + (Ayj—1 + Ayj2)?Fj1 — Ayl F

vta —

(Ay;—1)?(Ayj-1 + Ayj—2) — Ay;-1(Ay;-1 + Ayj-2)?
ifj>2 (83.d)

where Criy/2 = %(Ck + Crt1)s A = Sk+1 — Sk AY; = Yi1 — Yj» and 7 and k represent the
y and ¢ directions, respectively. The overlined quantity is the converged solution at the
previous step (j — 1 or j — 2).

The finite-difference equations for the Eq. (80)-(82) can be written as follows:

z-momentum equation

A¢ry

fe — fe-1— (Fe + Fi-1) =0 (84.a)

Af (Ck A;Fk) + ml(Tkéng + 55~ka), — Tk‘S;—F_k) - mz(ZFFk — FZ) — ms(E‘—ka

-{-Fka — Fk—G—k) + m6(§k5¢Fk + 6;Tkgk — ?]]6;?),) — m8(2—G_Gk — 62) + mq1Ck — m13F§

= my(Gi6, Fi + 6,F1Gx — Gi6,Fr — 6, F 6,95 — 6, Fib,g + 6 Fr6,3%) (84.b)

y-momentum equation

Age1

gk — Gk—1— (G + Gi-1) =0 (85.a)
A (Cr A;Gr) + mu(Fi8,Gx + 6Gifi — T16;Gx) — ms(2GGx — G2) — my(GrF
+Tka - F,Iik) + me(ﬁkéka + 5§—§kgk — 'g'kés.—ék) — mg(2FFk — T:) + M y9Ck — m13G;

= m7(a.k6va + 51,61;(;), — 6,;5[@,, — 5;Z¥-k5ygk — 55- Gkéygk + 6;6;;51,?,‘) (85.b)
energy equation
A; (nllk A‘Ek) + N2k 6§Ek + 5;1’13’)‘ - mlgEs- = m7(Gk5ij - 5§Ek5vgj) (86)

where the overlined quantities are evaluated from the previous iteration. The energy

equation does not require linearization since it is solved after the momentum equations.
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The finite-difference momentum equations, Eq. (84) and Eq. (85), are rearranged in

2x2 block tridiagonal form as

A
he = by + 5;‘ L(Hy + Hy_y) (87.2)
—Aka_l + Bka — CkHH—l + akhk = Dk (87b)
where
o [t]
gk
_ | Fe
w=[ G

Ag, By, Cy, a; are 2x2 matrices, and Dy is a vector.
These equations are solved by the Davis Modified Tridiagonal Algorithm (See Appendix
A). The finite-difference energy equation, Eq. (86), is arranged into the linear tridiagonal

matrix equation form as

BiEy 1+ DyEp + ArEryy = Cy (88)

where Ag, By, Ci, and D, are scalars.
This equation is solved using the Thomas Algorithm. The momentum equations and the
energy equation are solved iteratively in a uncoupled manner until the converged solution

is obtained. The converged solution is usually obtained within five iterations.

5.2 Matsuno’s Finite Difference Method

5.2.1 Formulation of Finite Difference Equations

Matsuno’s finite-difference method [16] is used to march the solution downstream
from the initial data plane (velocity and temperature profiles specified at initial data
plane; see Appendices B and C for detail). The method is a modification of the predictor-
corrector form of the Crank-Nicolson scheme, which was originally suggested by Douglas
and Jones [17] to apply to the three-dimensional boundary-layer problem. This scheme

is half implicit in the ¢ direction, explicit in the y-direction, noniterative and has second
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order of accuracy [16]. Also, the scheme is highly vectorizable for computation because

the crosswise derivatives are formed independent of the the sign of the crossflow velocity

component.

Again, for abbreviation, finite-difference operators are now defined as

5.Fi, = i1~ = (89.a)
TR AG 4 Ag
i i 2 P T kT Fip = Fxs
A(C D Fyy) = Aetiol {Cj,k+1/2T RS ey v 89.b)

(Ayi—l)z(F;-i-l.k - F;k) + (ij)z(F;,k - F;-l,k)

89.c
Ay;Ay;1(Ay; + Ayjoy) (89-)

5UF;,k =

where C;:,k:hl/z = L(Ci, + C}411), and 4,7, and k represents the z,y, and z directions,
respectively.

Figure 3 shows the finite-difference molecule for the scheme. To formulate the finite-
difference equations for the predictor step, the nonderivative terms are given as the value
at the previous step (i-th step), the z-derivative is obtained by backward differencing,
the first derivatives of y and ¢ are obtained by using central differencing at the previous
step explicitly, and the second derivative of ¢ is obtained using central differencing at the
predictor step implicitly. For the corrector step, the nonderivative terms are given as the
predictor values, the z-derivative is obtained by backward differencing, the first derivatives
of y and ¢ are obtained using central differences at the predictor step (¢ + 1/2) explicitly,
and the second derivative of ¢ is obtained by averaging the ¢-th step and (z + 1)-th step.
The finite-difference equations which approximate Eq. (51) through (53) are formulated
as follows:

Predictor

z-momentum equation

i 5 A — 'y s
BRSSP ERD =0 (00)
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A (Chp B F1 ) + my £y 6F — ma(F}y)? — ms Fj, Gy

Jl JD

+mg g} 6, F}, — ma(G5 )" + mu ¢ — mash Fj

. Fg‘-;1/2 ~Fi, fi-:1/2 _ ,
— 1 2 I s 2, 14
y-momentum equation
i+1/2 vtz DG G.+1/z Gy — o1
Gik' ~Y9ik-1 T o ( +Giplh) = (91.a)

A ( A Gc+1/2) + my f;:,k 6§G;”k — m;;(Gj.'k)? —my F;,k G;',k

+mg 9;,:: 6 G;k - mQ(I‘}i,k)z +my C;,k - m135§G;’,k
G¢+1/2 . G‘ f'+1/2 _fi

energy equation

A‘ (nu E A;E'-H/z) + n;j,k 6gE;:,k + 6s‘n§3j,k - m136§E;:J=
E,+1/2 i f1+1/2 —fi

= mm(F‘,,—"——— 8 E;

Az /2 k) + m7(G§i,k 6VE;:,I|: — & E;k 609;,1:) (92)

i AT

Corrector

rz-momentum equation

i i Age— F
G - (FE L) =0 (93.2)

F"f‘f'l F‘ ) . - .
A, {C'+1/2 Ag(_z-k_;_'_ﬂ} +my ;:1/2 5 F3;1/2 _ mz(F;’:lﬂ)z — mg F;’:l/z G;-;l/z

[ g 't s i t F§+1 - F‘
+meg i+1/2 b}F i+1/2 ms(G;;l/z)z + my cJ-i; /2 _ m135gF i+1/2 _ mlO(Fj,—:l/z'u

AZL','
+1/2 f'H ':k .+1/2 -+1/2 s+1/2 i+1/2
+
y-momentum equation
[ [} Agk 1 i
gJ:H - gﬁcl 17 (C'“ +Gl) =0 (94.a)
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GH_I Gi' ] 1 )
A, {Cs+l/2 Ag( + ,,k) } +my -+1/2 5 G-+1/2 ms(ij;l/z) I i+1/2 Gj?»kl/z

2
2 1/2 i+1/2 1/2 i+1/2 Gi'+kl - G'.'k
+me g 6, G — mo(Fis?)? + maa /% — musb GIRY" = muo(Fj 17— Ar
) i+l _ g .
_g, GV Iik ZJiky 4 (@R 6,V - 6,67 6,650 (94.b)

A.’E.'

energy equation

H EN +E, ; ; ; '
A, {nlj,}c/z A;(—z-—)} + 2';},/2 6. E; “/2 + 6‘n3’;’1/2 — m36.E}} i+1/2

i+1/2 E;.*I;l B Ei a+1/2 f‘+l ;:k £+1/2 1+1/2 |+1/2 i+1/2

where the superscripts ¢, 1+1/2, and 7+ 1 denote the i-th step, predictor step, and corrector
step, respectively.

Both the predictor and corrector finite-difference momentum equations (Egs. 90, 91,
93, 94) are rearranged in the 2x2 block tridiagonal form as Eq. (87) and solved by Davis
Modified Tridiagonal Algorithm (See Appendix A). Each (predictor and corrector) finite-
difference energy equation (Egs. 92, 95) is arranged into the same linear tridiagonal matrix
equation form as Eq. (88) and solved using the Thomas algorithm. Although there is cou-
pling between the momentum equations and the energy equation, these equations can be
solved in an uncoupled manner due to the quasi-linearization involved in the predictor and

corrector scheme.

5.2.2 Stability

The mathematical character of the three-dimensional boundary-layer equations was
shown by Raetz [1] to be hyperbolic in the z — y plane, resulting in the formulation of the
zone of influence and dependence principle. The influence of the solution at any point is
transferred by diffusion to all points on the line normal to the surface and by convection
downstream along the streamline through that point. The zone of dependence for a certain

point is a wedge shaped region facing upstream bounded by two characteristic surfaces each
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containing the outermost streamlines ( one is the inviscid streamline and the other is the
limiting streamline ) passing through the point.

The zone of dependence designates the minimum amount of initial data to be sup-
plied; in other words, the difference molecule must include the information in the zone of
dependence. Because of this principle, the standard finite-difference methods for solving
the three-dimensional boundary-layer equations using the numerical marching procedure
in the z— and y-direction must be modified whenever the sign of the cross-flow reverses.
More exactly, when the direction of any streamline in the boundary-layer is opposite to
the numerical marching direction, a modified method must be used. The finite-difference
methods used by Shevelev [18], Dwyer and Sanders [19], Mclean [20], and the Box scheme
used by Cebeci et al. [13] are examples of methods which require modification for the region
where the crossflow direction is opposite to the numerical marching direction. The Zig-zag
scheme used by Krause [21], Zig-zag Box scheme, and Characteristic Box scheme [10] are
examples of modifications used in this region for standard marching procedures.

The unique character of Matsuno’s scheme is that the crosswise (y) derivatives are
formed independent of the sign of the crosswise velocity component. The crosswise deriva-
tives are approximated by explicit, three-point central differencing at the previous step,
which yields stability independent of the crossflow direction. Therefore, Matsuno’s finite-
difference molecule does not depend on the crossflow direction.

The zone of dependence principle requires

2so and ]———hl Azv

1.0 6
U, hy Ay u | < (96)

Matsuno’s finite-difference scheme is conditionally stable [16], and the stability condition

gives the same constraint as that required by the zone of dependence principle.

5.2.3 Accuracy

The accuracy of the present procedure is established by comparing numerical results

for several test problems with previously published results obtained by other investigators.
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Case 1. Flat plate with attached cylinder

Three-dimensional incompressible laminar flow past a flat plate with an attached cylin-
der (Fig. 4) was calculated using Cartesian coordinates (h; = hy = 1). This flow has
been computed by several investigators. Fillo and Burbank [22] used the Crank-Nicolson
method, Cebeci [23] used the Box scheme, and Iyer [8] used fourth-order scheme. For this

flow, the inviscid velocity distribution is given by [23]

e = Ve {1 + ag[(y:__z(:);f;):]z} (97.a)

y(z — zo)
== 20) 1 57F (97.b)

v, = —2Vwa3[

where ag is the cylinder radius, and z; is distance of the cylinder axis from the leading
edge. To compare the numerical results with those obtained by other investigators, the
conditions V,, = 3050cm/sec, ag = 6.1cm, and z, = 45.7cm are chosen. The grid spacings
are Az = 0.61lecm, Ay = 0.61cm, and A¢ = 0.2 with ¢, = 8.0. The results ((f,.)w) are
shown in Table 1. The values presented in Ref. [23] have been multiplied by 1/+/2 to
properly account for differences in the transformation. The numerical results from the
present method are in good agreement with those computed by Fillo and Burbank [22],

by Cebeci [23], and by Iyer (8] as shown in Table 1.

Table 1. Comparison of the values of (f,,).

y=0 cm
z(cm) Fillo and Burbank [22] Cebeci 23] Iyer [8] Present
(C-N scheme) (Box Scheme) (Matsuno)
0.00 0.3321 0.3319 0.3321 0.3323*
2.44 0.3292 0.3289 0.3289 0.3293
4.88 0.3251 0.3250 0.3248 0.3253
7.32 0.3199 0.3198 0.3195 0.3202
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9.76

12.20
14.64
17.08

0.00
2.44
4.88
7.32
9.76
12.20
14.64

17.08

0.00
2.44
4.88
7.32
9.76
12.20
14.64
17.08

where * is obtained using Blottner’s iterative method.

0.3130
0.3035
0.2903
0.2715

y=3.05 cm

0.3321
0.3292
0.3254
0.3203
0.3137
0.3048
0.2925
0.2751

y=6.10 cm

0.3321
0.3295
0.3260
0.3216
0.3159
0.3084
0.2985

0.2851

0.3130
0.3036
0.2907
0.2722

0.3319
0.3289
0.3251
0.3202
0.3136
0.3047
0.2925

0.2751

0.3319
0.3292
0.3257
0.3213
0.3156
0.3082
0.2985

0.2853

28

0.3126
0.3031
0.2900
0.2713

0.3321
0.3290
0.3251
0.3200
0.3134
0.3045
0.2923

0.2752

0.3321
0.3293
0.3257
0.3213
0.3156
0.3082
0.2984

0.2854

0.3133
0.3039
0.2908
0.2721

0.3323
0.3294
0.3256
0.3206
0.3140
0.3052
0.2930

0.2758

0.3323
0.3296
0.3262
0.3218
0.3162
0.3088
0.2990

0.2857



Case 2. Ellipsoid of Revolution

The three-dimensional incompressible laminar flow over an ellipsoid of revolution with
ellipticity ratio 4 (a = 1m, b = 0.25m) was calculated for 0 and 6 degrees angle of attack
using body-oriented coordinates and the analytical potential solution. This flow has been
computed by Wang [24], Hirsh and Cebeci [25], and Cebeci and Su [26]. For this body, the
metric coefficients can be obtained exactly, and the velocity components can be obtained

analytically for the incompressible flow [10]:

(14 (X/a—1)2(2 — 1)) .
= ) (98

1-(X/a—1)?
hy = t/1 — (X/a — 1) (98.b)
e = Voo (Vo(t) cos acos B — Vyo(t) sin asin 8 cos ¢) (98.c)
v, = Vo (Voo (t) sin arsin ¢) (98.d)

where t = b/a. Here 3 is the angle between the line tangent to the ellipse and the positive

X axis; it is given by

V1-(X/a—1)

cos B = 99.a
V1+ (X/a—1)2(82 - 1) (99-2)
<0 if X/a>1, and B>0 if X/a<1 (99.b)
The parameters Vy(t) and Vy(t) are functions of ¢t and are defined by
(1 _ t2)3/2
Vo(t) = - (100.a)
VI— 8 — Letin { =007
2Vo(t )

V- —_— 7 100.

w(t) = TACR (100.b)

The skin friction coefficients (Cy; 0v/Reo = %\/K—?—I, where @ = 1) as a function
of X at an angle of attack zero degrees (axisymmetric flow) are shown in Fig. 5. The
present numerical results were obtained using the following grid distributions: 40 steps of
Az=0.001 near the nose followed by Az=0.02 downstream, and 41 grid points of A¢=0.2.
The present results are in very good agreement with the results of Hirsh and Cebeci.
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However, the results of Wang are considerably different (higher) from the present results
and also from the results of Hirsh and Cebeci.

Table 2 shows the present results of the streamwise wall shear values, (F;),, at an angle
of attack 6 degrees at X = 0.5(m). The present results were obtained using Az=0.001
for 40 steps near the nose, 0.02 downstream, Ay = 7 /36(kmaz = 37), and A¢=0.2. The
present results and the Box scheme results computed by Cebeci and Su [26] are compared
in Table 2. The results obtained by Cebeci and Su are multiplied by (u./Va) %/ to cor-
rectly account for the different definition of f' and transformation. The difference between
using Box scheme and Characteristic Box is within 0.6 percent for Az = 0.025. The dif-

ference between the present result and the standard Box scheme is also within 0.6 percent.

Table 2. Comparison of the values of f], at X = 0.5(m), a = 6°

$(degree) Standard Box [26] Characteristic Box [26) Present
0 0.6735 0.6735 0.6701
20 0.6665 0.6676 0.6626
40 0.6443 0.6461 0.6410
60 0.6090 0.6115 0.6064
80 0.5630 0.5660 0.5613
100 0.5103 0.5134 0.5096
120 0.4569 0.4597 0.4570
140 0.4116 0.4138 0.4121
145 0.4047 0.4050 0.4032
150 0.3952 0.3969 0.3956
155 0.3908 0.3909 0.3893
160 0.3837 0.3852 0.3843
180 0.3773 0.3773 0.3766
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5.2.4 Efficiency

Matsuno’s finite-difference method is fast and efficient compared with other current
methods. The efficiency and speed of the Box scheme and Matsuno’s scheme can be
directly compared. The Box scheme uses the block elimination method to solve the 6x6
block tridiagonal system obtained from the momentum equations. The energy equation
becomes a 2x2 block tridiagonal system when using the Box scheme. For Matsuno’s scheme,
the momentum equations yield a 2x2 block tridiagonal system which can be efficiently
solved using the Davis Modified Tridiagonal Algorithm, and the energy equation becomes
a linear tridiagonal matrix form which can be solved by the Thomas algorithm. Another
CPU advantage is that Matsuno’s finite-difference method is noniterative ( being only
a predictor-corrector procedure) compared with the Box scheme, which is an iterative
method because of the linearization. Although Matsuno’s finite-difference method requires
smaller stepsizes (Az) near the stagnation point where the velocity gradients are high
(which will be discussed in detail in Section 6.4), the computation time required to advance
the solution to a given z station using Matsuno’s finite-difference method is substantially
less than that required for the Box scheme.

Matsuno’s finite-difference method is also highly vectorizable [16] compared with other
schemes. The comparison of the CPU time between Matsuno’s and Box scheme can be
found in Ref. [16]. According to this comparison, Matsuno’s scheme operating in the vec-
tor mode requires approximately 1/50 of the CPU time required by the Box scheme to
calculate the same number of grid points. For the cases presented in the present paper the
CPU time per grid point was approximately 8x10~° second on the CRAY-2 ( 8 seconds for

110x31x31 grid ).

5.3 Modification of Matsuno’s Finite Difference Method

Matsuno’s finite-difference method uses explicit central differences for the crosswise

derivative terms (8 /dy). Therefore if the solution at one of the side boundaries does not

31



exist then grid points are dropped as the solution is marched in z. In this case, two grid
points are dropped (one at the predictor and the other at the corrector) for each step in the
z direction (See Fig. 6(a)). Consequently, without modification, the Matsuno procedure
can obtain the solution in only a small part of the whole flow field if the boundary-layer
solution does not exist at any y grid point.

The modified Matsuno’s finite-difference method uses second-order backward differ-
ences for the crosswise derivative terms at the side boundary when the solution at one
side (in the y-direction ) of the solution domain does not exist. The purpose of using
this method is to continue the solution downstream while minimizing the number of lost
solution stations in the z = const plane. This method can be used provided all the local
streamlines are in the positive y-direction, i.e., the zone of dependence principle is satis-
fied. When using this procedure, the boundary-layer solution can be obtained as far as
the boundary-layer assumption is valid (see Fig. 6(b)). This procedure can be used even
when the open type of separation occurs off the planes of symmetry.

Figure 7 shows the difference molecule for the modified Matsuno’s finite-difference
method. The modified finite-difference molecule is used only for the side boundary grid
point. As shown in Fig. 6(b), the standard Matsuno’s finite-difference molecule is used for
all interior points.

The hypersonic flow over a cone with half cone angle of 10 degrees at 4 degrees angle
of attack was chosen to validate the modified Matsuno method. The boundary-layer so-
lution on the leeward line of symmetry (¢ = 7) does not exist for these test conditions;
consequently the modified Matsuno’s molecule will be used for y = Ymaa.

The flow conditions are the same as Tracy’s [27]:

My, =795

Tioo = 755.4°K

P, o = 1.7878x10°% N/m?

Tw/Tico = 0.41
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The inviscid solution was obtained using the Euler code developed by Manuel D. Salas
(unpublished work) at the NASA Langley Research Center. The initial boundary-layer
solution near the nose tip (X = 0.02m) from the windward line of symmetry to near
the leeward line of symmetry was obtained using Blottner’s iterative method (Section
5.1). Using these initial velocity and temperature profiles, the calculation was continued
140 steps downstream to X = 2.39m using the modified Matsuno procedure on the side
boundary. This calculation was done using the body-oriented coordinate system. The step
size (Az) was small ( around 0.0007) near the nose tip, due to the zone of dependence
requirements, and increased as the solution proceeded downstream to a maximum value
0.2. The number of grid points in the y and ¢ directions are 31 (Ay = 7/30), and 41
(with A¢ = 0.2), respectively. The heat transfer ratio at the initial (I = 1, X = 0.02m)
and final (I = 140, X = 2.39m) solution stations is presented in Fig. 8. The initial heat
transfer at 1 =1 ( X = 0.02m ) is plotted as a line in Fig. 8; the heat transfer at I = 140
(X = 2.39m) is plotted as circles. The numerical results by Boericke [29], who obtained
the similarity solution using Blottner’s iterative method based on the inviscid solution from
Moretti [30], are also compared. The numerical results agree very well with each other as
well as with the experimental data obtained by Tracy [27]. Consequently, the modified
Matsuno procedure can be used to obtain accurate downstream solutions for those cases

where the boundary-layer solution does not exist for a side boundary.
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6. RESULTS AND DISCUSSION

6.1 Solution Procedure

The present method can be applied to any general fuselage-like configuration for com-
pressible, perfect-gas flow. The calculations can be made for either body-oriented or
streamline coordinates. A schematic flow chart of the procedure is presented in Fig. 9.

Two geometry programs have been used for modeling the bodies studied in the present
report: (1) the QUICK geometry program [31] and (2) the semi-analytic geometry program
developed by Barger and Adams [32]. The QUICK geometry program was to used for the
ellipsoid of revolution. Using the QUICK geometry program for a simple body, like an
ellipsoid of revolution, is exact since it uses analytic functions for the arc and bodyline
modeling. For the fuselage which was chosen for a test case, the semi-analytic geometry
program developed by Barger and Adams [32] was used. For this nonanalytic body, the
QUICK geometry program was not used due to the time it would have required to setup
for the geometric model. The semi-analytic geometry program (32] was found to yield
accurate and smooth modeling for the fuselage.

The inviscid solutions used are (1) an analytic potential solution, (2) Euler code, and
(3) the potential code developed by Hess [33]. Analytic potential solutions have been used
for the incompressible flow over a flat plate with an attached cylinder and for the ellipsoid
of revolution. In these cases, the analytically obtained inviscid solution and the metric
coefficients can be given directly to the boundary-layer code. The analytical inviscid
solution was used to investigate the accuracy of the finite-difference method in Section
5.2.3. For the inviscid solution on the cone, Euler code developed by Manuel D. Salas
(unpublished work) at the NASA Langley Research Center was used. The potential flow
code developed by Hess [33] was used to obtain the inviscid flow field over the ellipsoid of
revolution and the fuselage.

A typical inviscid grid on the fuselage is shown in Figure 10. For the present study,

most of the inviscid solutions from the Hess code were obtained using 54 grid points in

34



the X-direction and 37 grid points in the ¢-direction. The Hess code gives the inviscid
Cartesian velocity components and pressure coefficients at the centroids of each panel. A
major problem with the panel method is the loss of accuracy in the nose region because of
the singularity on the axis as X — 0. Consequently, the boundary-layer calculations must
be started slightly downstream from X = 0.

Two computer programs were developed to calculate the boundary-layer coordinates
(body-oriented and streamline ). These programs read the Cartesian inviscid velocity
components and the pressure coefficients on the inviscid grid. Given z and y distribution,
boundary-layer grid of the body surface is calculated using the method presented in Ap-
pendix D.1 (for the body-oriented coordinate system) or Appendix D.2 (for the streamline
coordinate system). These programs calculate the following on the boundary-layer grid:
U,, V., 8, cosd, hy, hy, Cp. The velocity components, cos 8, and the pressure coefficients are
interpolated from the inviscid grid onto the boundary-layer grid using bidirectional cubic
splines with tension interpolation subroutine.

For subsonic flows, the pressure on the body surface is not required as input because it
can be calculated using the velocity components and the isentropic relationship with the
freestream. When the pressure coeflicients are not given on the boundary-layer grid for the
subsonic flow, the three-dimensional boundary-layer code calculates the pressure using the
isentropic relationship (see Appendix D.3 for detail). However, for the supersonic flows,
the pressure coefficients on the boundary-layer grid must be specified because the pressure
on the body surface is not related isentropicly to the undisturbed free stream.

The boundary-layer calculation starts near the stagnation point or near the nose tip
for the fuselage with the initial velocity and temperature profiles. The initial profiles
are obtained at ¢+ = 1, and the boundary-layer calculation starts from ¢ = 2 (See Fig.
11). Each step (predictor or corrector step), the initial calculation starts at the windward
line of symmetry (j = 1); the unknown points off the line of symmetry are solved for

increasing values of j (7 = 2,3,..,jmaz — 1); then the solution at the leeward line of
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symmetry (j = jmaz) is obtained. The present finite-difference method uses explicit
central differences for the y-derivative terms. Consequently, the procedure does not sweep
in the y-direction, as is required for most other procedures. Therefore, identical numerical
results are obtained if the procedure is reversed, i.e., start at the leeward line of symmetry
(7 = jmaz) and solve for decreasing values of § (j = jmaz — 1, jmaz — 2,..,3,2) and then
the windward line of symmetry (5 = 1).

The procedure described above is based on the assumption that the boundary-layer
solutions on the whole surface (up to the leeward line of symmetry) exist. This assumption
is generally valid before the separation line (closed or open type of separation) for a blunted
nose fuselage.

For a sharp nose fuselage, the initial solution near the nose tip (¢ = 1) is obtained
using Blottner’s procedure [15] as far in the direction toward the leeward line of sy@etry
(7 = 1,2,..) as the solution can be obtained. If the boundary-layer solution on the leeward
line of symmetry exists, then the solution procedure for the sharp nose fuselage is the
same as for the blunted nose fuselage. However, if the boundary-layer solution near the
leeward line of symmetry does not exist, the modified Matsuno’s finite-difference method
introduced in the Section.5.3 is used for the last point where the boundary-layer solution
exists.

In the present method, the coefficients, m;, ms,..,m3, are determined numerically
from the given velocity components (u.,v.), s, cosd, and the metric coefficients (hy, k).
The coefficients, m;, mg,..,m;3, are evaluated at the mid point (:z:,-+1/2) except for the
crosswise(y-) derivative terms, which are evaluated at the corrector step (zi+1). For ex-
ample, (1/h;)(du./dz) is obtained using central differencing at the mid point (zit1/2),

i.e.,

1 0u, , Ou,  ui! —u} (101)
hy 8z  Os - Siv1 — Si

Similar derivatives, such as (1/h;)(8v./0z), (1/h1)(dh, cos 8/3z) are obtained in the same

way as the above. However, the crosswise(y-) derivative terms, such as du./dy, dv./dy,
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dh,/dy, are obtained at the corrector step (zi+1) assuming nonuniform spacing in the

y-direction, i.e.,

Au,  (Ayj_1/Ay;) (tesirr — Ues) + (Ay;/BYj1) (U — Ue,i-1) (102)
dy Ay; + Ay;_q

The nonderivative properties, u., v., S, b1, ks, p, and p are averaged from the values at

i-th and 7 + 1-th step.

6.2 Boundary-layer Parameters

The skin friction coefficients are defined and calculated from:

(401/02)w _ 210U (OF[8)u(p/pe)w (Petie] 1es)”

sz = %pe‘/ez peVe2 (103.&)
(10v/82)0 _ 20uVeo(3G/85)w(p]pe)u(petic/ pes)

= - 103.b

n =TI AZ (10.5)

To compare the skin friction coefficients with the results obtained by other investigators,
another definition of the skin friction coefficients is sometimes needed. The following

definition is used for the incompressible flow over the ellipsoid of revolution:

_ (udu/9z)w _ 200ue(BF /3¢)w(p/Pe)w(pette] pes)

Craoe = .
o = 1,37 V2 (104.2)
(499/92)0 2V (0G/0¢)ulp/pe)ulpette/es)
Croos = = .
Tv %PooVo% PooVO% (104 b)

where (8F /9¢),,, and (8G/8¢),, are evaluated by second order one-sided differences at the

wall, i.e.,
(19_F_) _ (Aa + A@)F, — (Ad)*Fs (105.)
3¢’Y  Aa(Aa+AR)—(Aa + Ao)(A)? '
oG, (A + A&)EGe — (Aa)’Gs (105.b)

(5;)1” T Aa(Ba + Ae)? - (Aa + Ag)(Aa)?
The skin friction coefficients presented in the present report are referenced to the body-

oriented coordinate system. Results obtained in the streamline coordinate system have
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been transformed to the body-oriented coordinate system as follows:

(Crz) = (CF, + C}v):¢/2 {cos(B + «) — sin(B + 7) cot 8} (106.2)

(Cro)s = (C}, + C},)il* sin(B + ) csc 8 (106.b)

where 8 = tan™'(Cy,/Cy;). and v is the angle between the streamline coordinate line
(y = const) and the body-oriented coordinate line (y = const).
Displacement thickness as presented in the present paper was not obtained from the

displacement surface equation but, instead, from the following definition:
/co

Heat transfer is calculated from:

} dz (107)

o P [(2eF)? + (Voo G)? + 20,V FG cos 6]/
/o 1- (p—) 1%

o = K(G)e = S (L) 2ty ST, (108)

where (8T /8¢),, is obtained from:

( )w _ [(A61)? — (A¢ + A)YT + (A + AG) Ty — (AG)’Ts

109
Aa(Ba+ Aw) — (ba + Aw) (Ba)? (109)

Along the lines of symmetry, C,, Cyy, 6”, and gq,, are obtained by substituting G = 0

in the equations above.

6.3 Test Cases

6.3.1 Hypersonic Cone With Mass Transfer

The hypersonic flow over the sharp cone at 0 degrees angle of attack with mass transfer
at the wall was selected as a test case with the following flow conditions (This flow condition

is the same as that used in Ref. [8] and [28]):

M,=74
0. =5°
a=20°
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Proo = 4.14x10% N/m?

Tioo = 833°K

T, = 316.65°

From X = O to X = 0.096 m, there is no mass transfer at the wall. From X = 0.096 m,
three types of mass transfer exist: (pw)w = 0; (pw)w = —0.090117 N sec/m® (wall suction);
and (pw),, = —0.090117 N sec/m* (wall injection).

The inviscid solution was obtained using the Euler code developed by M. D. Salas.
(unpublished) Figure 12 shows the skin friction coefficients on the cone with the mass
transfer conditions listed above. These results were obtained using uniform grid spacing
in the normal direction with A¢ = 0.2. From X = 0.096 to X = 0.1, very small stepsizes
(Az = 0.0002) were used to obtain a smooth skin friction coefficient when there is a mass
transfer. The results are in good agreement with the other results [8] (not shown). Inci-
dently, the solution obtained using a nonuniform (stretched) grid spacing in the normal
direction (A¢(1) = 0.01, A¢(s + 1)/A¢(5) = 1.05, j=1,2,..,jmax-1) is also presented as
small circles in Fig. 12. This result is in good agreement with the result using the uniform

grid spacing in the ¢-direction (solid line).

6.3.2 Supersonic Cone

The supersonic flow over the sharp cone with a half cone angle of 5 degrees at an angle

of attack 2.25 degrees was selected as a test case with the following flow conditions:

M, =35
0, =5°
a = 2.25°

DPtoo = 36)(103 lbf/ft2
Ttoo = 5400R
Tw = Taw

The inviscid solution was obtained using the Euler code developed by M. D. Salas. The
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initial boundary-layer solutions near the nose tip (X = 0.02 ft) from the windward line
of symmetry to near the leeward line of symmetry are obtained using Blottner’s iterative
method (Section 5.1). The step size (Az) is small ( around 0.0005) near the nose tip because
of the zone of dependence requirements and was increased downstream. The number of grid
points in the y and ¢ directions are 31 (Ay = 7/30) and 41 (with A¢ = 0.2), respectively.

The skin friction coefficients at X = 0.124,0.208,0.348, and 0.582 ft are plotted in
Fig. 13. At this angle of attack, the boundary-layer solution along the leeward line of
symmetry does not exist. However, using the modified procedure presented in section
5.3, the solution could be obtained downstream. The boundary-layer thickness and the
displacement thickness at the same locations are plotted in Figs. 14 and 15, respectively.
The streamwise and crosswise velocity and the temperature profiles at X = 0.582 ft are

plotted in Figs. 16 through 18.

6.3.3 Ellipsoid of Revolution

An ellipsoid of revolution having a four to one ratio of major to minor axis (a = 1m,
b = 1/4m) was selected as a test case, and the boundary-layer solutions were obtained
for incompressible flow at o = 6°. This particular case was selected because (1) its geom-
etry is analytic, (2) an exact potential solution exists for the inviscid flow field, and (3)
numerical results have been previously published (Reference [34]). Two approaches were
taken for each of the coordinate systems: (1) analytic grid generation, analytic metrics,
and the analytical inviscid potential solution ;(2) numerical grid generation, numerically
calculated metrics, and the inviscid flow field from the panel method of Reference [33]. The
axisymmetric analogue [35] was also used to obtain approximate results for comparison.

Skin friction coefficients (here, C,00v/Reo = %)1 Y3 where @ = 1) and the
displacement thickness results for V,, = 1m/sec are presented in Figures 19 and 20, re-
spectively. The skin friction results presented in Figure 19 are in the body-oriented coor-

dinate system,; i.e., results obtained in the streamline coordinate system were transformed
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to body-oriented coordinate system using Eq. (105) . When the exact metrics and inviscid
potential solutions were used, the difference between the results obtained using the body-
oriented and streamline coordinate systems was less than 0.25 percent. The agreement
between the numerical results obtained using the exact inviscid potential solution and
analytic geometry and the more general numerical approach, i.e., numerically generated
inviscid solution and coordinate system, is excellent for both boundary-layer coordinate
systems. In addition, comparisons are made with the results presented in Reference [34].
The axisymmetric analogue results have the correct trend as compared with the three-
dimensional results, except near the three-dimensional separation line, and are generally
within +5 percent of the three-dimensional values away from the separation line. At this
angle of attack, the three-dimensional separation line begins approximately at X = 1.32m,

¢ = 110° (See Cebeci and Su [26)).

6.3.4 General Aviation Fuselage

A low speed, general aviation aircraft fuselage was selected as a test case with nonana-
lytic geometry. The particular configuration has served as a flight test vehicle for transition
prediction procedures (see Refs. [36] and [37].). This case is particularly interesting in
that the crossflow is into the plane of symmetry: v, < 0Oas¢ — 0, v, > 0as ¢ — 7.
Consequently, standard marching procedures can not be used to advance from the solution
obtained on either line of the symmetry plane (¢ = 0, ¢ = ) into the three-dimensional
region (0 < ¢ < =), because any attempt to do so would violate the zone of dependence
principle.

Numerical results were obtained for a Mach number and unit Reynolds number of 0.3
and 7x10% m~!, respectively for 0° and 3° angles of attack for an adiabatic wall. A photo-
graph of the aircraft is presented in Fig. 4 of Reference [36]. A typical panel distribution
used to obtain the inviscid solution is presented in Figure 10. The boundary-layer grid for

the body-oriented coordinate system is shown in Figure 21, and two boundary-layer grids
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for the streamline coordinates (31 streamlines) are shown in Figure 22.
(1) Zero Degrees Angle of Attack

A side view of the fuselage forebody is presented in Figure 23 showing the maximum
pressure line and the crossflow velocity regions. As previously discussed, because the lines
of symmetry (¢ = 0, and ¢ = =) are inflow lines, standard marching procedures can
not be used to advance the solution from the lines of symmetry into the interior region
(z = const; j = 2,3,.., jmaz — 1). However, Matsuno’s method is independent of the sign
of the crossflow velocity and can be used.

Numerical results are presented in Figure 24 through 26 for @ = 0°. The agreement
between the skin friction coefficients obtained in the two coordinate systems is excellent
over the entire surface and the difference is within one percent. The axisymmetric analogue
results have the same general trend as the three-dimensional boundary-layer results, except
that they yield larger values of Cy, near the plane of symmetry and fail to predict the (OF
trend along the side of the fuselage (¢ ~ 7/2).

Boundary-layer thickness and displacement thickness results exhibit similar trends in
agreement between the results obtained in the two coordinate system and the axisymmet-

ric analogue.

(2) Three Degrees Angle of Attack

At this angle of attack, the flow field has two relative maxima pressure lines for 0 <
¢ < m with multiple changes in the sign of the crossflow velocity (see Figure 27.). Figure
28 shows the values of v./V,, as a function of ¢ from the inviscid solution at X = 0.6, 0.9,
1.2, and 1.5. The sign of v, changes three times as ¢ increases from 0 to 7 at X = 1.5.
Numerical results for & = 3° are presented in Figures 29 through 35. Example streamwise
and crossflow velocity profiles are presented in Figs. 29 and 30. Temperature profiles are

presented in Figure 31.

Skin friction coefficients, boundary-layer thickness, and the displacement thickness re-
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sults are presented in Figures 32 through 34, respectively. The agreement between the
numerical results in the body-oriented and the streamline coordinate system is excellent
over the entire surface. The axisymmetric analogue results are not acceptable at this an-
gle of attack in that they are in error in both magnitude and trend. For example, the
axisymmetric analogue results for Cy, are on the order of 10 percent greater than the
three-dimensional values as the windward plane of symmetry is approached and fail to
predict the Cy, trend for ¢ ~ 7 /2.

Three-dimensional results for the velocity profiles in the streamline direction are com-
pared with the axisymmetric analogue results in Figure 35 for X = 1.3m. The axisymmet-
ric analogue results yield larger values of d(u/u.),,/82 than the three-dimensional results
as well as larger values of u/u, across the boundary layer at these points.

During the fuselage study questions were raised concerning the behavior of the numer-
ical results in the neighborhood of the plane of symmetry. It can be seen that the results
from the streamline coordinate system were not smooth; i.e., slight oscillations occured
near the plane of symmetry. The streamline coordinate system using 31 streamlines for
the fuselage is presented in Figure 22. The streamlines are initially uniformly distributed
in the crossflow plane at the initial station (z = 0); however, they tend to converge to-
ward the symmetry lines (¢ = 0;¢ = ) as z increases. Consequently, as z increases,
the streamline distribution becomes highly nonuniform with a dense packing of the grid
lines in the neighborhood of the symmetry lines and a sparse distribution in the region
7/3 < ¢ < 57/6. Using this streamline distribution it was not possible to obtain the
correct skin friction coefficient behavior numerically near ¢ = x/2. This problem was
not present in the body-oriented coordinate system, because the boundary-layer grid re-
mained nearly uniform for each z location. In order to obtain the correct behavior of the
boundary-layer in the ¢ ~ 7/2 region it was necessary to use 91 streamlines. Although
the use of 91 streamlines corrected the problem in the region of ¢ ~ x/2, it created a new

problem, oscillatory values of the boundary-layer parameters, in the neighborhood of the
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symmetry lines. This was found to be caused by the combined effect of grid density and
the oscillation of the metric coefficient, h;, in the y-direction. Using 31 streamlines, this
oscillation was not present.

The term AK,/dy assumes a dominant role along the symmetry lines. The term is
directly proportional to 8%u,/dy? because the metric coefficient, h,, is defined by Eq. (23)
for the streamline coordinate system. The ipviscid results are first obtained at the cen-
troids of the panels. Using this relatively coarse distribution of centroids, it is difficult
to obtain accurate values of 8%u,./8y? on the densely packed boundary-layer grid because
du,./dy is zero at $ = 0 and ¢ = w. Special attention must be paid to this term when
using the streamline coordinates and when the grid points are concentrated near the lines

of symmetry.

6.4 Restricton on Grids

The present method is developed in such a way that one can use nonuniform grid
spacing in the streamwise (z), crosswise (y), and in the normal (¢) direction. The grid
spacing in the z-direction near the stagnation point where the velocity gradients are large,
has to be small not to yield oscillatory boundary-layer parameters. Figure 36 shows the
computed skin friction coefficient variation with X for the incompressible flow over the
ellipsoid of revolution (¢ = 1m,b = 1/4m) at zero degrees angle of attack. The analytic
inviscid solution as given in Section 5.2.3 is used to obtain the results. Step size (Az) values
of 0.001, 0.002, and 0.005 were used for the first 40 steps; thereafter, Az was set to 0.02.
As can be seen in this figure, the computed skin friction coefficient near the stagnation
point oscillates increasingly about the correct solution as the step size is increased. In this
figure, the correct solution can be assumed to be the solution of using Az of 0.001 near
the stagnation point (solid line). It is also apparent that once the solution approaches the
correct solution the oscilation vanishes even with abrupt increase in Az to 0.02.

The zone of dependence principle requirement (Eq.(96)) also restricts Az. Because
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the coordinates are calculated prior to the boundary-layer calculation (see Fig. 9), the
stepsizes are determined before the stability condition is checked. The stability is checked
as the boundary-layer solution is obtained, and the calculation is continued as far as the
stability condition is satisfied and is stopped when it is violated. Therefore, when the zone
of dependence principle is violated with the present Az distribution, the stepsizes after
that point must be obtained by a trial-and-error method. However, the step where the
stability condition is violated must be very close to the separation line because the wall
limiting streamline changes its direction very rapidly near the three-dimensional separation
line. It is to be noted that the stepsize near the nose is severely restricted because of the
zone of dependence principle.

The grid distribution in the ¢ direction used to obtain most of the results presented was
uniform (for most cases, A¢=0.2). However, a nonuniform grid spacing in the ¢ direction
can be used as well. The boundary-layer grid in the y direction can be given arbitrarily.
However, the grid points in the y direction used in this study are uniformly distributed
(Ay = 7/(kmaz—1)) regardless of the coordinate system used (body-oriented or streamline
coordinates). The actual distance between two grid points with the same z is hoAy. In the
streamline coordinates, y remains the same along each streamline; therefore, Ay between
two streamlines remains the same even downstream. The metric coefficient, h,, is a direct
function of the streamline divergence and varies over a large range as z increases in the
streamline coordinate system. Nonuniform spacing downstream on the general fuselage
when using the streamline coordinates is due to the variation of metric coefficient k3, not

because of the nonuniform distribution of Ay.
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7. CONCLUDING REMARKS

The three-dimensional, compressible, laminar boundary-layer equations have been nu-
merically solved for several configurations at angle of attack. The finite-difference pro-
cedure used to solve the governing equations is second order accurate. The procedure is
independent of the sign of the crossflow velocity component and is the best method known
for configurations having crossflow reversal regions. The crossflow velocity direction for a
general aviation fuselage was into the plane of symmetry on both the most windward and
leeward surfaces for the angles of attack considered (0° and 3°). Consequently, standard
solution procedures, which march around the body using the plane of symmetry as an
initial data plane, could not be used to solve this fuselage test case. However, no numer-
ical problems were encountered using the finite-difference procedure used in the present
analysis. This was true even at three degrees angle of attack, where the crossflow veloc-
ity component reversed direction as many as three times in thé region bounded by the

windward and leeward symmetry planes.

Numerical solutions for the fuselage-type configurations were obtained using two boundary-

layer coordinate systems: (1) a body-oriented coordinate system and (2) a streamline co-
ordinate system. The agreement between the boundary-layer parameters obtained in the
two coordinate systems was excellent over the entire fuselage surface. The boundary-layer
grid (body-oriented or streamline) can be totally independent of the inviscid grid, i.e., the
number of grid points in the £ and y direction of the boundary-layer grid do not have to
be the same as those of the grid used to obtain the inviscid solution.

Based on the experience of using the two different coordinate systems on a general
fuselage, the following conclusions can be made: (1)the generation of the streamline coor-
dinates requires more effort than the body-oriented coordinates; (2) it is difficult, if not
impossible, to control the boundary-layer grid distribution using the streamline coordi-
nates; (3) the numerical results obtained using the body-oriented coordinates with only 31

grid points in the y-direction are better than those using the streamline coordinates with
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91 streamlines. Therefore, the body-oriented coordinate system is generally better than
the streamline coordinate system for boundary-layer calculations on a general fuselage,
provided the geometry singularity at the nose point in the body-oriented cooedinates can
be avoided. Note, however, that the streamline coordinate results are excellent and may be
preferable when output along streamlines is needed, as in transition prediction procedures.

Excellent agreement of the boundary-layer solutions using two different coordinate sys-
tems strongly validates this boundary-layer method and the application software. This
boundary-layer method is robust, fast, and can be applied to any type of fuselage (either
with a blunted nose or sharp nose) which has a symmetry plane. However, further devel-
opment is needed to add additional capabilities, such as viscous-inviscid interaction, real
gas effects for hypersonic flows, and turbulence closure. A user’s manual with a detailed

description of the computer programs and input is presented in Volume II.
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Appendix A. Block Tridiagonal Matrix Algorithm

The two vector equations to be solved are

Age
hy = hy_y + g‘ L(Hy + He_y) (Al.a)

—AH, 1+ ByHy — CyHyy1 + arhy = Dy (A1.b)

where A, B;,Cy, and a, are 2x2 matrices, Hy, hy, and D are vectors. These equations
are solved using the Davis Modified Tridiagonal Algorithm (See Appendix A). Introduce
FEy, e, and d; such that

Hy = E Hy ) + exhe_y + di (A2)

where E; and e, are 2x2 matrices, d; is a vector.

Using Eq. (A2), Eq. (Al.b) becomes
— ApHy 1 + By Hy — CyExy1Hy — Crepyprhy — Crdiyr + arhy = Dy (A3)

Define
R), = ax — Ckek+1 (A4)

Then, Eq. (A3) may be written as
— ArHp 1+ (Bi — CxEry1)Hiy + Rihi = Dy + Crdiyq (A5)

Substituting Eq. (Al.a) into Eq. (A5) gives

A A&
(—Ar+ g‘; le)Hk—l + (Bk — CxEg41 + s‘; le)Hk + Rphi—y — D — Crdg1 = 0 (A6)
Next, define
_ A1

pr = B — CoEpyr + Ry (A7)

Solving Eq. (A6) for H,,

-1 Ak -1 -1

Hy = p; (Ax — 5 Ry)He_y — pp Rihi—1 + p; ' (Di + Crdiy1) (A8)
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Equating Eqs. (A2) and (A8) term by term yields

ex = —p; R (A9.a)
Agi-

Ev=p; Ar+ gz" Le, (A9.b)

dk = p;l(Dk + dek+1) (AQC)

The boundary condition at the edge of the boundary-layer (k=kmax) is

1.0
Hkmaz - [ ve/Vref ]

This provides the conditions

1.0
dkmaz - [ ve/Vrcf ]

€kmaz — Ekmaz =0 (AIO)

The parameters of Eq. (A9) are first determined for decreasing values of k (kmax-1, kmax-
2,...,2) beginning at the edge of the boundary-layer. Then Egs. (Al.b) and (A2) are solved

for increasing values of k (k=2,3,..., kmax) using the boundary conditions at the wall,

Hy=h =0 (A11)
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Appendix B. Initial Profiles Near Stagnation Piont

Here, to avoid confusion, the rectangular coordinates, which have their origin at the
stagnation point are described by z*, y*, and z* (See Figs. 37 and 38.) The corresponding
velocity components are u*, v*, w*, and the inviscid velocity components are u}, v}, w},

respectively. The relations of this rectangular coordinate system (z*, y*, 2*) with the

rectangular coordinate system (z', 3, 2') which has its origin at the body nose (X = 0),

are
z* = cosb,.(2' — 2}) —sinb,(z' — z}) (Bl.a)
v =y (B1.b)
2* = —cosb,(z' — z}) — sinb,(z' — 2}) (Bl.c)

where 6, is the angle between the two coordinate systems, and z! and 2] are the z' and 2’

coordinates of the stagnation point, respectively.

The stagnation point solutions are denoted with the subscript s, i.e.,

fl=u"/u; (B2.a)

e

g, =v*/v (B2.b)

e

and are obtained using the Blottner’s iterative method.

B.1 Body-Oriented Coordinates

The body-oriented coordinates (z,y) which have their origin at X = 0 and the rect-
angular coordinates (z*,y*) which have their origin at the stagnation point are shown in
Fig. 37(b). It is assumed that the stagnation point is very close to X = 0, which is true
for a small angle of attack regardless of the shape of the nose.

The inviscid velocity components u, and v, at a point P are

%, = —u,cosy + v, siny (B3.a)

v, =u,siny + v, cosy (B3.b)
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The boundary-layer velocity components at the point P are

uw=—ulflcosy+v,g,siny (B4.a)

v=ulflsiny +v)g,cosy (B4.b)

The initial velocity profiles (off the lines of symmetry) in the body-oriented coordinate

system are obtained from the following equations.

—ulflcosy +v,g,siny _ —Az* f'cosy + By'g, siny

'_—_-'u, u, = B5.a
f [ue —ulcosy + v;siny —Az* cosy + By*siny ( )
ul flsi *g' cos Az* f'siny + By*g), co
§ = /Vo = ef,smy;v,g,co y _ Az'f,si yV y'g,cos y (B5.b)
[e o] o0

where A and B are velocity gradients at the stagnation point (defined in Eq. (69)) in the
z* and y* directions, respectively.
On the lines of symmetry,
f'=u/u.={, (B6)
Even though v is zero along the lines of symmetry, dv /8y is not zero and can be obtained

as follows (y* = siny = 0):

d
¢ =v,/Veo = 6—y(A:r:"f'siny-{-By"g'cosy)/Voo (B7)
or
¢ =v,/Voo = (Az" f'cosy + B(3y"/dy)¢' cosy) [ Veo (B8)
Note that
cosy=1, 8y'/dy=h, along the windward line of symmetry  (B9.a)
and cosy=—1, 08y'/dy= —h, along the leeward line of symmetry (B9.b)
Finally,

g' = vy/Veo = (—Alz"|f; + Bhagl) [ Vo (B10)
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B.2 Streamline Coordinates

The streamline coordinates (z,y) and the rectangular coordinates (z*,y*) which both
have their origins at the stagnation point are shown in Fig. 38.

The inviscid velocity u, at a point P is
u, = u;sinfB + v; cos B (B11)
The boundary-layer velocity components at point P are

u=u,f,sinf +vlg' cos B (B12.a)

v=u,f,cosf —vig'sinp (B12.b)

where 3 is the angle between the streamline direction z and the y* direction and is given

by
u, Az z*
an v; By C*y* ( )
Substituting 4 into Egs. (B11) and (B12) gives
fl + gl (By*/Aa:*)z
" _ L=t 7 B14.
ff=u/u T+ (By Az )? (B14.a)
1 __ ABzwy*)
oy = =) .
¢ =V = (Y + (B (B14)
On the lines of symmetry,
ff=ufu,=f (B15)
Along the lines of symmetry, dv/dy can be obtained from
v dv 9z*  dv dy*
— = B16
3y oz 9y | 3y dy (B16)
Near the lines of symmetry the following relations are valid:
az*
—_ = 17.
3y hycos 3 (B17.a)
a;; = —h,sin 3 (B17.b)
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Along the lines of symmetry, cos B = 0; consequently, the first term of the right hand
side of Eq. (B16) vanishes to yield

g—: = —hgysin ﬂgz—‘(u:f; cos B — v’ g, sin B) (B18)
Expanding Eq. (B18) and substituting cos 8 = 0, sin?f =1,0v:/0y’ = B, v, = By* =0,

dp/dy* = -C*/z", and u, = Az* gives
g = vy/Veo = haB(g, — £,)/Veo (B19)

The total enthalpy profile at point P is given as the stagnation point total enthalphy
profile.

An additional factor that must be considered is the difference between ¢ in the stagna-
tion point and main coordinate systems (body-oriented or streamline coordinate systems).
This is because of the difference in definition of u, and s between the stagnation point
coordinates and the main coordinates. To have a desired ¢ distribution for the main co-
ordinate system, interpolation could be used in obtaining the values at a corresponding
¢ from the stagnation point solution. However, this procedure is not used in the present
computer program because the difference of u,/s is negligible when the angle of attack is
small, as considered in the present report.

The velocity gradients at the stagnation point (4, B) and the location of the stagnation
point (z.,2}) and 8, are calculated in the streamline coordinate program. To obtain good
approximate initial profiles near the stagnation point using this procedure, the velocity
gradients, location of the stagnation point, and 4, must be obtained accurately. However,
the velocity gradients are difficult to calculate accurately, especially when using a numerical
inviscid solution, because the inviscid solution near the stagnation point changes rapidly.
Accuracy was tested for the ellipsoid of revolution on which these values can be obtained
exactly. These values could not be obtained accurately from the Hess panel method inviscid
solution. The inaccuracy was caused mainly by the singularity of this inviscid method near

X = 0. Thus the above procedure for calculating the initial profiles is used in the computer
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program for the case when these values can be obtained accurately.

However, when the angle of attack is small, as considered in the present study, the
ratio of the two velocity gradients (B/A = C") is close to unity and the stagnation point
is close to X = 0. We can use the axisymmetric stagnation point solution obtained by
using C* = 1 when any of the velocity gradients, location of the stagnation point, or 8, is
not easy to obtain or is not sufficiently accurate. In this case, the initial profiles near the
stagnation point can be obtained easily. The difference of the boundary-layer solutions

between cases using different values of C* vanishes within 5 downstream steps.
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Appendix C. Initial Profiles Near Nose Tip for Sharp Nose Body

The initial velocity and temperature profiles near the nose tip of the general sharp nose
body are obtained based on the body-oriented coordinate system. Consequently, if the
boundary-layer solution is sought using the body-oriented coordinates for the whole flow
field on the sharp nose body, the initial profiles are used as they are obtained at ¢+ = 1.

However, when the boundary-layer solution is to be obtained using the streamline coor-
dinate system, initial velocity profiles based on the streamline coordinate system must be
obtained, see Fig. 39. Assume the velocity profiles based on the body-oriented coordinates
near the nose tip (obtained using the Blottner’s iterative method in the present report)

are given as:
fy = (w/ue)s (C1.b)
g = (v/Voo)s (Cl.c)

where subscript b denotes the body-oriented coordinates.

Then, from Fig. 39,

(Vu? 4+ v2),cos 8 (C2.d)

fli= (u/ue)s =
(/e (yul + v
gl = (0] Vi) = —ULT VoSN f (C2.¢)

Voo

where the subscript st denotes the streamline coordinates. Here, B is the angle between

the inviscid streamline and the local streamline and is given by

(vu, +vve)s (C3)

(yu? + v2)s (VT + 02,

cosf =

Substituting S into Eq. (C2) gives

,_ (ud)sfy + Voo (ve)ogh
fat - (uz + UZ)IJ (C4g)
Voo (ue)sgh — (weve)s fy) (C4.h)

]
gt =
* Vio (/u2 + v2)s

In deriving Egs. (C2) through (C4), the body-oriented coordinates (z and y) near the nose

tip are assumed to be orthogonal.
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Appendix D. Boundary-Layer Edge Conditions

D.1 Body-Oriented Coordinates

The body-oriented coordinate system employed in the present report is constructed by
pure cross-sectional cuts. One coordinate is the line of intersection of the body surface and
a X = const plane, the other coordinate on the surface is the line of intersection of the
body-surface and a meridional plane (¢=const plane). This coordinate system (z and )
is in general nonorthogonal for fuselage shapes. In these coordinates, £ is measured along
the axis and has the same value as X. Also, y has the same value as ¢. However, the
directions of z and y are different from X and ¢, respectively. See Fig. 1 for the definitions
of this coordinate system. Figure 21 shows the body-oriented boundary-layer grid on the
fuselage shape studied in the present report.

The inviscid velocity components in the rectangular coordinates are given at the cen-
troid of panel P (X}, ¢,,r,) from the inviscid code; see Fig. 40 . Using the geometry
program, the point Q (X, #,,r,), which lies within a small distance (6X) from the point
P along z-direction, and the point R (X,, ¢,,r,), which lies with a small angle (6¢) from
the point P along the positive y-direction, can be obtained. Here, 6X and 8¢ can be
chosen arbitrarily small (typically 0.01).

Now, from the definition of the rectangular (z', ¥, 2') and cylindrical (X, r, $) coordi-

nate systems,

z, = X, Yy, = rpsing, z, = —r,sing, (D1.a)
Ty = X, Yy, = r,sing, z, = —rysin g, (D1.b)
z, = X, Y. = r,sin ¢, z. = —r,sin ¢, (D1.c)

where X, = X, + 6X, ¢, = ¢,, X, = X, and 4, = ¢, + 6¢.

Then, cos 8 is calculated from the following equation:

(5~ ) (=} — ) + (s — ) (81— ) + (2} — ) (2 — =) 02
Vil — 2 + (v — ) + (2 — 2)2 /(2 — 2,2 + (u — ¥)? + (2L — 21)?
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The angle between the streamline with the z-direction can be obtained by:

_ (e /Veo) (g — 73) + (uy/Veo) (4 — yp) + (42 /Veo) (2, — %))

cosy = (D3)
(Ve/Voo)y/ (2 — zp)2 + (v — 4)* + (2 — 2)?
where V, is the inviscid total velocity, i.e.,

The inviscid velocity components in the body-oriented coordinates on the centriods are

obtained from the equations below.

U, /Voo = (V./Voo) sinycsc (D5.a)

Ve/Voo = —(Ve/Veo) sinycot 8 + (V. /Va) cos ¥ (D5.b)

After the inviscid velocity components and cosf are obtained on the centroids of panels,
u, is extrapolated along the lines éf symmetry. On these lines, cosd and v, are equated
to zero. The velocity components, pressure coefficients (which is not necessary for the
subsonic flow), and cos 8 on the boundary-layer grid are interpolated using the bidirectional
cubic spline with tension program. The first derivatives of the velocity components, such as
du./dz, du./dy, dv./dz, are smooth and continuous using this interpolation subroutine.
This subroutine must not be substituted by the Lagrangian interpolation subroutine.

The metric coefficients are calculated as below:

ds Os
M=% " 3% (D6-2)
azr' ay' az
— 2 2 —)2 .
b=+ G+ () (D6.b)

where 8z'/dy, dy' /8y, and 8z'/By are obtained by central differences.
For the case of the incompressible flow over the ellipsoid of revolution, the exact metrics

and the analytical inviscid solution can be obtained in a closed form; see Section 5.2.3.
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D.2 Streamline Coordinate System

To calculate the inviscid streamlines, the method developed by Hamilton et al. (38] is
used. In the present report, a spherical coordinate system (R, ©, #) with the origin at
X = X,,p is employed (Fig. 41) for calculating the inviscid streamlines. The axial location
Xosp can have arbitrary value, but X,,, = 1.0 is used.

The velocity components in this spherical coordinate system can be obtained from the

velocity components in the rectangular coordinates (z', ', 2') by the following relationships.

R/ Voo = {(Z' — Xowp) (uxr /Veo) + Y (uy /Veo) + 2'(ve /Vio)} /R (D7.a)

o/Vao = {V(& = Xou)(tp/Via) + #(5' — Xo) (w1 Vie) — (V) } /rR (DT.D)

g/ Voo = {2'(uy/Veo) — ¥/ (uar /Vo) } /7 (D7.c)
where

r = W (Dsa)

R = /(2 ~ Xoup)? + y? + 2” (D8.b)
Now, let
D a
Dz = (%)v.z (D9)

be the derivative along an inviscid streamline on the surface.

Then, from Eq. (50) and Ref. [38],

Ds Voo
Bo = hy = m (D10.a)
DX  c0sO(ug/Ve) — sin O(ue /Vy)

— D10.
5 (eI (D10.b)
D¢  uy/Vy (D10.c)

Dz~ 1(u./Veo)?
To establish the initial location of streamlines for the blunt nosed body, locate ©, (© at
the stagnation point) as the point where ¢ = 0 and u, = 0. Then, draw a cone which has

an angle € with respect to the line connecting the stagnation point and the origin of the
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spherical coordinates; see Fig. 41 . The initial location of streamlines on the intersection

of the ¢ cone and the body surface can be obtained from the following equations:

¢ = 7/2 +sin”! {(e cosycos @, — V1 — e sin @,)/Gl} (D11.a)
where
2
Gl = {(e cosycos @, — V1 — e?sin®,)? + sin? e sin® y}ll (D11.b)

cos ©, = sin ecos ysin ©, + cos ecos O, (D11.c)

Equations (D11) locate the coordinates (X, and ¢.) for the initial position of streamlines
near the stagnation point.

Tt should be noted that the initial locations of streamlines obtained as described above
are not on the same z location, i.e., the initial z-direction and y-direction are not orthogonal
to each other. To generate the orthogonal streamline coordinates, the initial location of
streamlines has to be readjusted using integrations along the streamlines.

For the sharp nose fuselage, the initial locations of streamlines are at the same small
X. As for the blunted nose body, the initial locations of the streamlines ( i.e., on the same
X) are not on the same z. To generate the orthogonal streamline coordinates, the initial
locations of the streamlines have to be readjusted.

The inviscid total velocity (u.) and three velocity components (ug,ug,ue) are calcu-
lated on the centroids of panels using Eq. (D7). The inviscid velocity components along
the lines of symmetry are then extrapolated using the appropriate condition along these
lines (u.,ug,ue; symmetry condition). The inviscid velocity components and the pres-
sure coefficients on the whole surface are obtained using the same interpolation program
(bidirectional cubic spline with tension ) as used for the body-oriented coordinates.

The fourth-order Runge-Kutta method is used to obtain the streamlines, i.e., to inte-
grate Eq. (D10). The metric coefficient, hy, is defined as Eq. (23) in this coordinates. The

metric coefficient, kg, is obtained in the same way as for the body-oriented coordinates,
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ie.,

b=+ e Ly (D12)

D.3 Temperature and Pressure

For both body-oriented and streamline coordinate systems, the temperature at the edge

of the boundary-layer can be obtained using the total inviscid velocity, i.e.,

T/Tos =1+ LML~ (22)7 (D13)

e o]

Equation (D13) is derived from the inviscid energy equation and is valid for all speed
regimes. Temperature at the boundary-layer edge is calculated using the above equation
in the boundary-layer code. Therefore, temperature at the edge of the boundary-layer is
not a required input.

For subsonic, shock-free flow, the pressure can be obtained from the isentropic relation

with the free stream, i.e.,

P./Puy = (22) /07 (D14)

Pressure at the edge of the boundary-layer is calculated using the above equation with T,
obtained from Eq. (D13) in the boundary-layer code. Consequently, pressure at the edge
of the boundary-layer is not a required input for subsonic flow. However, for supersonic
flow when there is a shock wave present between the body and the free stream the pressure
must be given as an input to the boundary-layer code, because the pressure on the body
surface can not be obtained using the isentropic relationship with the undisturbed free

stream.
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